login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370364
Number of partitions of [n^2] into n sets of size n having at least one set of consecutive numbers whose maximum (if n>0) is a multiple of n.
3
0, 1, 1, 28, 22893, 2443061876, 68542265471953355, 833412961429901104030214430, 6514551431426932053792271970458170132097, 45458343253887079540702419310885199704811913950207054152, 375236832464739513549091449370258959406125572044428827214970469920572831639
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{j=0..n-1} (-1)^(n-j+1)*binomial(n,j)*(n*j)!/(j!*n!^j).
a(n) = A370363(n,n).
a(n) = A057599(n) - A370367(n).
EXAMPLE
a(1) = 1: 1.
a(2) = 1: 12|34.
a(3) = 28: 123|456|789, 123|457|689, 123|458|679, 123|459|678, 123|467|589, 123|468|579, 123|469|578, 123|478|569, 123|479|568, 123|489|567, 124|356|789, 125|346|789, 126|345|789, 127|389|456, 128|379|456, 129|378|456, 134|256|789, 135|246|789, 136|245|789, 137|289|456, 138|279|456, 139|278|456, 145|236|789, 146|235|789, 156|234|789, 178|239|456, 179|238|456, 189|237|456.
MAPLE
a:= n-> add((-1)^(n-j+1)*binomial(n, j)*(n*j)!/(j!*n!^j), j=0..n-1):
seq(a(n), n=0..10);
CROSSREFS
Main diagonal of A370363.
Sequence in context: A280283 A221928 A281324 * A159439 A270070 A159443
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 16 2024
STATUS
approved