%I #11 Feb 28 2024 06:30:18
%S 1,1,0,1,0,1,1,0,3,4,1,0,6,16,41,1,0,10,40,205,768,1,0,15,80,615,4608,
%T 27449,1,0,21,140,1435,16128,192143,1887284,1,0,28,224,2870,43008,
%U 768572,15098272,252522481,1,0,36,336,5166,96768,2305716,67942224,2272702329,66376424160
%N Triangle read by rows where T(n,k) is the number of labeled graphs with n vertices and k non-isolated vertices.
%F T(n,k) = binomial(n,k) * A006129(k).
%F T(n,n-1) = (n-1) * A006129(n-1).
%F T(n,k) = A198261(n, n-k). - _Andrew Howroyd_, Feb 26 2024
%e Triangle begins:
%e 1
%e 1 0
%e 1 0 1
%e 1 0 3 4
%e 1 0 6 16 41
%e 1 0 10 40 205 768
%e 1 0 15 80 615 4608 27449
%e Row n = 3 counts the following edge sets:
%e {} . {{1,2}} {{1,2},{1,3}}
%e {{1,3}} {{1,2},{2,3}}
%e {{2,3}} {{1,3},{2,3}}
%e {{1,2},{1,3},{2,3}}
%t Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[Union@@#]==k&]],{n,0,5},{k,0,n}]
%t Flatten@Table[Binomial[n,k]*Sum[(-1)^(k-m) Binomial[k,m] 2^Binomial[m,2],{m,0,k}],{n,0,10},{k,0,n}] (* _Giorgos Kalogeropoulos_, Feb 25 2024 *)
%Y Row sums are A006125, unlabeled A000088.
%Y Column k = n is A006129, unlabeled A002494.
%Y Mirror of A198261, unlabeled A217653.
%Y The unlabeled version is the partial subsequences of A002494.
%Y Cf. A001187, A003465, A006126, A116508, A143543, A287689, A367862.
%K nonn,tabl
%O 0,9
%A _Gus Wiseman_, Feb 18 2024
%E More terms from _Giorgos Kalogeropoulos_, Feb 25 2024