login
Number of chordless cycles in the complement of the n-Sierpinski tetrahedron graph.
0

%I #4 Feb 14 2024 14:15:10

%S 0,12,3018,66882,1151778,18762402

%N Number of chordless cycles in the complement of the n-Sierpinski tetrahedron graph.

%C All complement chordless cycles are of length 4.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ChordlessCycle.html">Chordless Cycle</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphComplement.html">Graph Complement</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SierpinskiTetrahedronGraph.html">Sierpinski Tetrahedron Graph</a>

%K nonn,more

%O 1,2

%A _Eric W. Weisstein_, Feb 14 2024