login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A370297
Inverse Moebius transform of A322328.
0
1, 5, 5, 13, 5, 25, 5, 25, 13, 25, 5, 65, 5, 25, 25, 41, 5, 65, 5, 65, 25, 25, 5, 125, 13, 25, 25, 65, 5, 125, 5, 61, 25, 25, 25, 169, 5, 25, 25, 125, 5, 125, 5, 65, 65, 25, 5, 205, 13, 65, 25, 65, 5, 125, 25, 125, 25, 25, 5, 325, 5, 25, 65, 85, 25, 125, 5, 65, 25, 125, 5, 325
OFFSET
1,2
FORMULA
Multiplicative with a(p^e) = 1 + 2*e*(e+1) for prime p and e >= 0.
Dirichlet g.f.: (zeta(s))^5 / (zeta(2*s))^2.
Dirichlet convolution of A034444 and A048691.
Dirichlet inverse sequence b(n) for n > 0 is multiplicative with b(p) = -5 and b(p^e) = (-1)^e * (8*e-4) for prime p and e > 1.
MATHEMATICA
f[p_, e_] := 2*e^2 + 2*e + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Feb 14 2024 *)
PROG
(PARI) a(n) = factorback(apply(e->1+2*e*(e+1), factor(n)[, 2]))
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Werner Schulte, Feb 14 2024
STATUS
approved