%I #21 Feb 17 2024 04:04:27
%S 0,1,3,3,6,6,6,6,6,10,10,10,10,10,10,10,10,10,10,10,10,10,10,15,15,15,
%T 15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,
%U 15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,21,21,21,21,21
%N Triangular number T(n) = A000217(n) occurs C(n) = A000108(n) times.
%H Paolo Xausa, <a href="/A370291/b370291.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) = A000217(A072643(n)).
%F Sum_{n>=1} (-1)^(n+1)/a(n) = Sum_{n>=1} (-1/2)^(n-1)/(2^n-1) = 0.86233289403022175171... . - _Amiram Eldar_, Feb 17 2024
%e Written as a triangle:
%e 0;
%e 1;
%e 3, 3;
%e 6, 6, 6, 6, 6;
%e 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10;
%e ...
%p T:= n-> n*(n+1)/2$binomial(2*n,n)/(n+1):
%p seq(T(n), n=0..5); # _Alois P. Heinz_, Feb 16 2024
%t Flatten[Array[Table[PolygonalNumber[#], CatalanNumber[#]] &, 7, 0]]
%Y Cf. A000108, A000217, A072643.
%Y Row sums of A370221 (for n >= 1).
%Y Row sums as triangle give A002457(n-1) for n>=1.
%K nonn,easy,tabf
%O 0,3
%A _Paolo Xausa_, Feb 14 2024