login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370284
Coefficient of x^n in the expansion of 1/( (1-x)^3 - x^3 )^n.
1
1, 3, 21, 168, 1425, 12483, 111594, 1011636, 9264753, 85510590, 794087151, 7410887718, 69446624910, 653019755430, 6158495001960, 58226492157048, 551725482707505, 5238008159399163, 49814314319342424, 474467729545936650, 4525387365179378775
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(n+k-1,k) * binomial(4*n-1,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x * ((1-x)^3 - x^3) ). See A369114.
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(n+k-1, k)*binomial(4*n-1, n-3*k));
CROSSREFS
Cf. A369114.
Sequence in context: A361375 A371771 A214391 * A046637 A220103 A132805
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 13 2024
STATUS
approved