login
A370213
Coefficient of x^n in the expansion of ( (1+x)^2 / (1-x^3) )^n.
2
1, 2, 6, 23, 102, 477, 2265, 10831, 52134, 252581, 1230831, 6027012, 29630793, 146162525, 723042585, 3585576123, 17819138214, 88723077165, 442503268107, 2210287317913, 11055220684527, 55362552116104, 277553123875572, 1392884816721228, 6996589905913737
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..floor(n/3)} binomial(n+k-1,k) * binomial(2*n,n-3*k).
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x / (1+x)^2 * (1-x^3) ). See A369398.
PROG
(PARI) a(n, s=3, t=1, u=2) = sum(k=0, n\s, binomial(t*n+k-1, k)*binomial(u*n, n-s*k));
CROSSREFS
Cf. A369398.
Sequence in context: A279572 A263576 A370196 * A231444 A248900 A376395
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 12 2024
STATUS
approved