login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370200
a(n) = numerator((n!)^2/(2*(n-2)!*n^n)).
1
1, 2, 9, 48, 25, 2160, 2205, 17920, 5103, 18144000, 21175, 2874009600, 11293425, 100452352, 9577693125, 167382319104000, 253127875, 57621363351552000, 282135852999, 75676057600000, 372075093219375, 12364008005553684480000, 57618381445625, 11912609313278197235712
OFFSET
2,2
COMMENTS
a(n) is the numerator of the probability that a sequence of n integers randomly chosen from [n] contains exactly n - 1 different integers (see Brualdi, pp. 57-58).
REFERENCES
Richard A. Brualdi, Introductory Combinatorics, 5th ed. Pearson Education Inc., 2009.
MATHEMATICA
a[n_]:=Numerator[n!^2/(2(n-2)!n^n)]; Array[a, 24, 2]
CROSSREFS
Cf. A000142, A000312, A001044, A370201 (denominators).
Sequence in context: A228341 A378074 A289576 * A369315 A223832 A323958
KEYWORD
nonn,frac
AUTHOR
Stefano Spezia, Feb 11 2024
STATUS
approved