Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Feb 19 2024 10:49:17
%S 0,1,4,-18,-240,1900,42372,-482552,-14970816,222612624,8825080100,
%T -161981127968,-7809130867824,170561613679808,9678967816041188,
%U -245159013138710400,-16000787866533953280,461102348510408544512,34017524842099233036996,-1098983344602124698522112,-90417110945911655996319600
%N Imaginary part of (1 + n*i)^n, where i is the imaginary unit.
%C The ratio a(n)/A121626(n) converges to c for odd n and to -1/c for even n for n -> oo with c = 0.6420926... (= cot(1) (A073449) from _Moritz Firsching_, Feb 14 2024). See linked plots.
%H Paolo Xausa, <a href="/A370189/b370189.txt">Table of n, a(n) for n = 0..350</a>
%H Hugo Pfoertner, <a href="https://oeis.org/plot2a?name1=A370189&name2=A121626&tform1=untransformed&tform2=untransformed&shift=0&radiop1=ratio&drawpoints=true">Plot of ratio a(n)/A121626(n)</a>, using Plot 2.
%H Hugo Pfoertner, <a href="https://oeis.org/plot2a?name1=A121626&name2=A370189&tform1=asinh&tform2=asinh&shift=0&radiop1=xy&drawpoints=true">Plot of asinh(a(n)) vs asinh(A121626(n))</a>, using Plot 2.
%F a(n) = Sum_{j=0..floor((n-1)/2)} binomial(n,2*j+1)*n^(2*j+1)*(-1)^j. - _Chai Wah Wu_, Feb 15 2024
%t Array[Im[(1+#*I)^#] &, 25, 0] (* _Paolo Xausa_, Feb 19 2024 *)
%o (PARI) a370189(n) = imag((1+I*n)^n)
%o (Python)
%o from math import comb
%o def A370189(n): return sum(comb(n,j)*n**j*(-1 if j-1&2 else 1) for j in range(1,n+1,2)) # _Chai Wah Wu_, Feb 15 2024
%Y Cf. A121626 (real part), A115415, A115416.
%Y Cf. A073449.
%K sign,easy
%O 0,3
%A _Hugo Pfoertner_, Feb 14 2024