login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370147
Expansion of ( (1 + x)*(1 + 7*x)*(1 + 49*x) )^(1/3).
4
1, 19, -228, 6492, -216372, 7851180, -300848772, 11974587132, -490113592788, 20492868223308, -871404823013412, 37562003034015900, -1637401559515373172, 72053378865932154348, -3196217668534369463748, 142763786831538212246076, -6415201218873454789867284, 289797678008730755585589900
OFFSET
0,2
COMMENTS
The cube root of F(x) = (1 + x)*(1 + 7*x)*(1 + 49*x) = (1 + 57*x + 399*x^2 + 343*x^3) is an integer series because F(x) == (1+x)^3 (mod 9).
In general, for k > 1, if g.f. = ((1 + x)*(1 + k*x)*(1 + k^2*x))^(1/3), then a(n) ~ (-1)^(n+1) * (k-1)^(2/3) * (k+1)^(1/3) * k^(2*n-1) / (3*Gamma(2/3)*n^(4/3)). - Vaclav Kotesovec, Feb 24 2024
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x)^3 = (1 + x)*(1 + 7*x)*(1 + 49*x) = (1 + 57*x + 399*x^2 + 343*x^3).
(2) Product_{n>=1} A( (-7)^(n-1)*x^n )^3 = Sum_{n>=0} (-7)^(n*(n-1)/2) * (1 + (-7)^(2*n+1))/(-6) * x^(n*(n+1)/2).
a(n) ~ (-1)^(n+1) * 2^(5/3) * 7^(2*n-1) / (3^(1/3) * Gamma(2/3) * n^(4/3)). - Vaclav Kotesovec, Feb 24 2024
EXAMPLE
G.f.: A(x) = 1 + 19*x - 228*x^2 + 6492*x^3 - 216372*x^4 + 7851180*x^5 - 300848772*x^6 + 11974587132*x^7 - 490113592788*x^8 + ...
where A(x)^3 = (1 + 57*x + 399*x^2 + 343*x^3).
RELATED SERIES.
We have the following infinite product involving the g.f. A(x)
A(x)^3 * A(-7*x^2)^3 * A(49*x^3)^3 * A(-343*x^4)^3 * A(2401*x^5)^3 * ... = 1 + 57*x - 19607*x^3 - 47079151*x^6 + 791260232049*x^10 + 93090977300134793*x^15 + ... + (-7)^(n*(n-1)/2) * (1 + (-7)^(2*n+1))/(-6) * x^(n*(n+1)/2) + ...
PROG
(PARI) {a(n) = polcoeff( ( (1 + x)*(1 + 7*x)*(1 + 49*x) +x*O(x^n))^(1/3), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Feb 23 2024
STATUS
approved