Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Feb 15 2024 08:21:50
%S 1,-2,4,-8,14,-22,28,-14,-80,420,-1430,4128,-10798,26176,-59114,
%T 123442,-232240,365888,-355616,-475892,4318112,-17471288,56635490,
%U -163101656,432173038,-1067080032,2456709054,-5216642696,9906435640,-15415122000,12937725806,33034018944,-238942986520
%N Expansion of g.f. A(x) satisfying Sum_{n>=0} Product_{k=1..n} (x^k + A(x)) = 1 + 2*Sum_{n>=1} x^(n*(n+1)/2).
%H Paul D. Hanna, <a href="/A370141/b370141.txt">Table of n, a(n) for n = 1..210</a>
%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
%F Let Q(x) = 1 + 2*Sum_{n>=1} x^(n*(n+1)/2), then
%F (1) Q(x) = Sum_{n>=0} Product_{k=1..n} (x^k + A(x)).
%F (2) Q(x) = Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=0..n} (1 - x^k * A(x)).
%F (3) Q(x) = 1/(1 - F(1)), where F(n) = (x^n + A(x))/(1 + x^n + A(x) - F(n+1)), a continued fraction.
%e G.f.: A(x) = x - 2*x^2 + 4*x^3 - 8*x^4 + 14*x^5 - 22*x^6 + 28*x^7 - 14*x^8 - 80*x^9 + 420*x^10 - 1430*x^11 + 4128*x^12 + ...
%e Let Q(x) = 1 + 2*Sum_{n>=1} x^(n*(n+1)/2)
%e then A = A(x) satisfies
%e (1) Q(x) = 1 + (x + A) + (x + A)*(x^2 + A) + (x + A)*(x^2 + A)*(x^3 + A) + (x + A)*(x^2 + A)*(x^3 + A)*(x^4 + A) + (x + A)*(x^2 + A)*(x^3 + A)*(x^4 + A)*(x^5 + A) + ...
%e also
%e (2) Q(x) = 1/(1 - A) + x/((1 - A)*(1 - x*y*A)) + x^3/((1 - A)*(1 - x*y*A)*(1 - x^2*y*A)) + x^6/((1 - A)*(1 - x*y*A)*(1 - x^2*y*A)*(1 - x^3*y*A)) + x^10/((1 - A)*(1 - x*y*A)*(1 - x^2*y*A)*(1 - x^3*y*A)*(1 - x^4*y*A)) + ...
%e Further, A = A(x) satisfies the continued fraction given by
%e (3) Q(x) = 1/(1 - (x + A)/(1 + x + A - (x^2 + A)/(1 + x^2 + A - (x^3 + A)/(1 + x^3 + A - (x^4 + A)/(1 + x^4 + A - (x^5 + A)/(1 + x^5 + A - (x^6 + A)/(1 + x^6 + A - (x^7 + A)/(1 - ...)))))))).
%e where
%e Q(x) = 1 + 2*x + 2*x^3 + 2*x^6 + 2*x^10 + 2*x^15 + 2*x^21 + ... + 2*x^(n*(n+1)/2) + ...
%o (PARI) {a(n,y=1) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
%o A[#A] = polcoeff( (sum(m=1,#A, prod(k=1,m, x^k + y*Ser(A) ) ) - (y+1)*sum(m=1,sqrtint(2*#A+1), x^(m*(m+1)/2) ) )/(-y), #A-1) ); H=A; A[n+1]}
%o for(n=1,40, print1(a(n),", "))
%Y Cf. A370140, A370142, A370143, A370144.
%K sign
%O 1,2
%A _Paul D. Hanna_, Feb 14 2024