login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 1, a(n) = (-1)^n + (1/2) * Sum_{j=1..n} (1-(-1)^j-(-2)^j) * binomial(n,j) * a(n-j) for n > 0.
3

%I #37 Feb 28 2024 20:40:05

%S 1,1,3,16,105,856,8433,96916,1272225,18789136,308335713,5565837916,

%T 109603592145,2338198823416,53718370204593,1322292130204516,

%U 34718481333932865,968552056638097696,28609403248435931073,892022330159009036716,29276492753074019702385

%N a(0) = 1, a(n) = (-1)^n + (1/2) * Sum_{j=1..n} (1-(-1)^j-(-2)^j) * binomial(n,j) * a(n-j) for n > 0.

%C Inverse binomial transform of A370456.

%C Conjecture: Let k > 2 be a positive integer. The sequence obtained by reducing a(n) modulo k is eventually periodic with the period dividing phi(k) = A000010(k). For example, modulo 10 we obtain the sequence [1, 1, 3, 6, 5, 6, 3, 6, 5, 6, 3, 6, 5, 6, 3, 6, 5, 6, ...] with an apparent period of 4 beginning at a(2). See A000670 for a more general conjecture. - _Peter Bala_, Feb 16 2024

%F E.g.f.: 2*exp(x)/(1 + exp(x) + exp(2*x) - exp(3*x)).

%t a[0]=1;Table[(-1)^n+Sum[ (1-(-1)^j- (-2) ^j) *Binomial[n,j]*a[n-j]/2,{j,1,n} ],{n,0,20}] (* _James C. McMahon_, Feb 10 2024 *)

%o (SageMath)

%o def a(m):

%o if m==0:

%o return 1

%o else:

%o return (-1)^m+1/2*sum([(1-(-2)^j-(-1)^j)*binomial(m,j)*a(m-j) for j in [1,..,m]])

%o list(a(m) for m in [0,..,20])

%o (PARI) seq(n)={my(p=exp(x + O(x*x^n))); Vec(serlaplace(2*p/(1 + p + p^2 - p^3)))} \\ _Andrew Howroyd_, Feb 10 2024

%Y Cf. A370163, A370456.

%K nonn

%O 0,3

%A _Prabha Sivaramannair_, Feb 09 2024