login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370045
Expansion of 1 / Sum_{n>=0} (-4)^n * (2*4^n + 1)/3 * x^(n*(n+1)/2).
3
1, 12, 144, 1552, 16512, 172800, 1803200, 18765312, 195167232, 2028914688, 21089678592, 219201730560, 2278287884288, 23679245377536, 246107817345024, 2557891149933568, 26585106479751168, 276308723697205248, 2871777147680423936, 29847423508786839552, 310215112347152351232
OFFSET
0,2
LINKS
FORMULA
From Vaclav Kotesovec, Feb 25 2024: (Start)
a(n) ~ c * d^n, where
d = 10.39336299855957350315151176284030870108168399888817592486381041027988779...
c = 1.433973222898078483437999597179822040398973315396494951383570608840342399...
d = 1/r, where r = 0.09621524814812982023560791941974657613430770687333255066... is the smallest positive root of the equation Sum_{k>=0} (-4)^k * (2*4^k + 1) * r^(k*(k+1)/2) = 0. (End)
EXAMPLE
G.f.: A(x) = 1 + 12*x + 144*x^2 + 1552*x^3 + 16512*x^4 + 172800*x^5 + 1803200*x^6 + 18765312*x^7 + 195167232*x^8 + 2028914688*x^9 + 21089678592*x^10 + ...
RELATED SERIES.
The expansion of 1/A(x) is the following series (A370018)
1/A(x) = 1 - 12*x + 176*x^3 - 2752*x^6 + 43776*x^10 - 699392*x^15 + 11186176*x^21 + ... + (-4)^n * (2*4^n + 1)/3 * x^(n*(n+1)/2) + ...
The cube root of A(x) begins
A(x)^(1/3) = 1 + 4*x + 32*x^2 + 240*x^3 + 2048*x^4 + 17920*x^5 + 163904*x^6 + 1526784*x^7 + 14473216*x^8 + 138743808*x^9 + ... + A370044(n)*x^n + ...
Also, the sixth root of A(x) is an integer series starting as
A(x)^(1/6) = 1 + 2*x + 14*x^2 + 92*x^3 + 742*x^4 + 6188*x^5 + 54956*x^6 + 498584*x^7 + 4625478*x^8 + 43493324*x^9 + 413627172*x^10 + ...
PROG
(PARI) {a(n) = my(A); A = 1 / sum(m=0, sqrtint(2*n+1), (-4)^m * (1 + 2*4^m)/3 * x^(m*(m+1)/2) +x*O(x^n)); polcoeff(H=A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Cf. A370018 (1/A(x)), A370044 (A(x)^(1/3)), A370019 (A(x)^(-1/3)).
Sequence in context: A189697 A189059 A189197 * A264523 A171286 A190132
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 24 2024
STATUS
approved