Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Feb 18 2024 09:05:58
%S 1,9,80,703,6130,53351,466315,4118167,36941188,337853203,3155619199,
%T 30087573015,292226014968,2882482639376,28783571541579,
%U 290149337803965,2945978857054165,30080058358496842,308542728377796463,3177317808394936571,32835881264222087409,340467815173685043729
%N Expansion of g.f. A(x) satisfying Sum_{n=-oo..+oo} (x^n - 9*A(x))^n = 1 - 7*Sum_{n>=1} x^(n^2).
%C A related function is theta_3(x) = 1 + 2*Sum_{n>=1} x^(n^2).
%H Paul D. Hanna, <a href="/A370039/b370039.txt">Table of n, a(n) for n = 1..326</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a>
%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
%F (1) Sum_{n=-oo..+oo} (x^n - 9*A(x))^n = 1 - 7*Sum_{n>=1} x^(n^2).
%F (2) Sum_{n=-oo..+oo} x^n * (x^n + 9*A(x))^(n-1) = 1 - 7*Sum_{n>=1} x^(n^2).
%F (3) Sum_{n=-oo..+oo} (-1)^n * x^n * (x^n - 9*A(x))^n = 0.
%F (4) Sum_{n=-oo..+oo} x^(n^2) / (1 - 9*x^n*A(x))^n = 1 - 7*Sum_{n>=1} x^(n^2).
%F (5) Sum_{n=-oo..+oo} x^(n^2) / (1 + 9*x^n*A(x))^(n+1) = 1 - 7*Sum_{n>=1} x^(n^2).
%F (6) Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / (1 - 9*x^n*A(x))^n = 0.
%e G.f.: A(x) = x + 9*x^2 + 80*x^3 + 703*x^4 + 6130*x^5 + 53351*x^6 + 466315*x^7 + 4118167*x^8 + 36941188*x^9 + 337853203*x^10 + 3155619199*x^11 + ...
%e where
%e Sum_{n=-oo..+oo} (x^n - 8*A(x))^n = 1 - 7*x - 7*x^4 - 7*x^9 - 7*x^16 - 7*x^25 - 7*x^36 - 7*x^49 - ...
%e SPECIAL VALUES.
%e (V.1) Let A = A(exp(-Pi)) = 0.07041342765468695859173243504212855904085321490660808668...
%e then Sum_{n=-oo..+oo} (exp(-n*Pi) - 9*A)^n = (9 - 7*Pi^(1/4)/gamma(3/4))/2 = 0.69747816075342194898639...
%e (V.2) Let A = A(exp(-2*Pi)) = 0.001899358496977867055016493259704554658290299283307899768...
%e then Sum_{n=-oo..+oo} (exp(-2*n*Pi) - 9*A)^n = (9 - 7*sqrt(2 + sqrt(2))/2 * Pi^(1/4)/gamma(3/4))/2 = 0.98692790079291318133312...
%e (V.3) Let A = A(-exp(-Pi)) = -0.03108273985731889208644710399967055047528520340415555251...
%e then Sum_{n=-oo..+oo} ((-1)^n*exp(-n*Pi) - 9*A)^n = (9 - 7*(Pi/2)^(1/4)/gamma(3/4))/2 = 1.302473016453591125074...
%e (V.4) Let A = A(-exp(-2*Pi)) = -0.001836569230890760040434767580223720991124539653197115902...
%e then Sum_{n=-oo..+oo} ((-1)^n*exp(-2*n*Pi) - 9*A)^n = (9 - 7*2^(1/8)*(Pi/2)^(1/4)/gamma(3/4))/2 = 1.013072099036825024735...
%o (PARI) {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);
%o A[#A] = polcoeff( sum(m=-#A,#A, (x^m - 9*Ser(A))^m ) - 1 + 7*sum(m=1,#A, x^(m^2) ), #A-1)/9 ); A[n+1]}
%o for(n=1,30, print1(a(n),", "))
%Y Cf. A370041, A370030, A370031, A355868, A370033, A370034, A370035, A370036, A370037, A370038, A370043.
%K nonn
%O 1,2
%A _Paul D. Hanna_, Feb 10 2024