login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A370000
Decimal expansion of Sum_{k>=0} (-1)^k/(3*k+2)^3.
0
1, 1, 8, 4, 3, 8, 7, 7, 8, 4, 2, 5, 0, 5, 7, 5, 2, 9, 6, 2, 5, 6, 1, 6, 8, 6, 1, 9, 4, 3, 0, 2, 5, 4, 3, 8, 7, 3, 2, 8, 8, 7, 9, 8, 2, 9, 7, 8, 3, 5, 6, 6, 8, 2, 4, 8, 0, 7, 9, 6, 8, 5, 0, 3, 4, 4, 7, 5, 5, 7, 1, 7, 5, 8, 4, 1, 0, 2, 8, 2, 0, 4, 2, 9, 0, 0, 4, 5, 9, 6, 2, 1, 1, 9
OFFSET
0,3
LINKS
R. W. Gosper, Acceleration of Series, Artificial Intelligence (1974) # 304.
FORMULA
Equals Sum_{n>=0} (-1)^n/A016791(n).
Equals A226735 - 13*zeta(3)/18 = 5*Pi^3/(2*3^(9/2)) - 13*zeta(3)/36.
EXAMPLE
1/8 - 1/125 + 1/512 - 1/1331 + ... = 0.118438778425057529625616861943025438732887982...
MAPLE
5*Pi^3/2/3^(9/2)-13*Zeta(3)/36 ; evalf(%) ;
MATHEMATICA
RealDigits[5*Pi^3/(2*3^(9/2)) - 13*Zeta[3]/36, 10, 120][[1]] (* Amiram Eldar, Feb 09 2024 *)
PROG
(PARI) sumalt(k=0, (-1)^k/(3*k+2)^3) \\ Michel Marcus, Feb 07 2024
CROSSREFS
Sequence in context: A091475 A197482 A292529 * A154211 A019723 A093822
KEYWORD
nonn,cons
AUTHOR
R. J. Mathar, Feb 07 2024
STATUS
approved