login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of isomorphism classes of elliptic curves over the finite field of order prime(n) whose trace of Frobenius is zero.
0

%I #7 Feb 14 2024 01:56:22

%S 1,2,2,2,4,2,4,4,6,6,6,2,8,4,10,6,12,6,4,14,4,10,12,12,4,14,10,12,6,8,

%T 10,20,8,12,14,14,6,4,22,14,20,10,26,4,10,18,12,14,20,10,12,30,12,28,

%U 16,26,22,22,6,20,12,18,12,38,8,10,12,8,20,14,16,38,18,10,12,34,22,6,20,16

%N Number of isomorphism classes of elliptic curves over the finite field of order prime(n) whose trace of Frobenius is zero.

%C a(n) is the number of isomorphism classes of elliptic curves E over the finite field F_p such that E has exactly p+1 points over F_p.

%H Max Deuring, <a href="https://doi.org/10.1007/BF02940746">Die Typen der Multiplikatorenringe elliptischer Funktionenkörper</a>, Abh. Math. Sem. Univ. Hamburg 14 (1941), 197-272.

%H R. Schoof, <a href="https://doi.org/10.1016/0097-3165(87)90003-3">Nonsingular plane cubic curves over finite fields</a>, J. Combin. Theory Ser. A 46 (1987), no. 2, 183-211.

%H W. C. Waterhouse, <a href="https://doi.org/10.24033/asens.1183">Abelian varieties over finite fields</a>, Ann Sci. E.N.S., (4) 2 (1969), 521-560.

%F a(n) = A259825(4*prime(n))/12 if n > 2.

%e For n = 1, the unique a(1) = 1 elliptic curve over F_2 whose trace of Frobenius is zero is y^2 + y = x^3.

%e For n = 2, the a(2) = 2 elliptic curves over F_3 whose trace of Frobenius is zero are y^2 = x^3 + x and y^2 = x^3 + 2*x.

%e For n = 3, the a(3) = 2 elliptic curves over F_5 whose trace of Frobenius is zero are y^2 = x^3 + 1 and y^2 = x^3 + 2.

%o (PARI) a(n) = if (n<=2, n, qfbhclassno(4*prime(n)));

%o (Sage) # A brute force computation of a(n)

%o def a(n):

%o if n==1: return 1

%o p, ECs = Primes()[n-1], []

%o for A,B in ((x, y) for x in range(p) for y in range(p)):

%o if ((4*A^3 + 27*B^2)%p != 0):

%o E = EllipticCurve(GF(p), [A,B])

%o if (E.trace_of_frobenius()==0):

%o if not any([E.is_isomorphic(Ei) for Ei in ECs]): ECs.append(E)

%o return len(ECs)

%Y Cf. A259825, A362243.

%K nonn

%O 1,2

%A _Robin Visser_, Feb 05 2024