login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = [x^n] Product_{d|n} (x^d + 1 + 1/x^d).
1

%I #10 Feb 05 2024 20:57:20

%S 1,1,1,1,1,4,1,1,1,1,1,19,1,1,1,1,1,11,1,11,1,1,1,85,1,1,1,6,1,64,1,1,

%T 1,1,1,145,1,1,1,54,1,41,1,1,5,1,1,382,1,1,1,1,1,34,1,34,1,1,1,2425,1,

%U 1,3,1,1,27,1,1,1,23,1,1943,1,1,1,1,1,20,1,225

%N a(n) = [x^n] Product_{d|n} (x^d + 1 + 1/x^d).

%C a(n) is the number of solutions to n = Sum_{d|n} c_i * d with c_i in {-1,0,1}, i=1..tau(n), tau = A000005.

%H Alois P. Heinz, <a href="/A369875/b369875.txt">Table of n, a(n) for n = 1..20000</a>

%t Table[Coefficient[Product[(x^d + 1 + 1/x^d), {d, Divisors[n]}], x, n], {n, 1, 80}]

%o (Python)

%o from collections import Counter

%o from sympy import divisors

%o def A369875(n):

%o c = {0:1}

%o for d in divisors(n,generator=True):

%o b = Counter(c)

%o for j in c:

%o a = c[j]

%o b[j+d] += a

%o b[j-d] += a

%o c = b

%o return c[n] # _Chai Wah Wu_, Feb 05 2024

%Y Cf. A000005, A033630, A083206, A316706, A369874.

%K nonn

%O 1,6

%A _Ilya Gutkovskiy_, Feb 03 2024