login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions of 5*n-2 into parts 4 and 5.
4

%I #17 Mar 15 2024 07:25:10

%S 0,1,3,6,10,16,29,64,156,376,860,1873,3965,8347,17751,38303,83488,

%T 182497,397978,864339,1871236,4046070,8751965,18952107,41080980,

%U 89090436,193201660,418857277,907802332,1967174726,4262706876,9237582992,20020241409,43391549313

%N Number of compositions of 5*n-2 into parts 4 and 5.

%H Paolo Xausa, <a href="/A369850/b369850.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-4,1).

%F a(n) = A017827(5*n-2).

%F a(n) = Sum_{k=0..floor(n/4)} binomial(n+k,n-2-4*k).

%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 4*a(n-4) + a(n-5).

%F G.f.: x^2*(1-x)^2/((1-x)^5 - x^4).

%t LinearRecurrence[{5, -10, 10, -4, 1}, {0, 1, 3, 6, 10}, 50] (* _Paolo Xausa_, Mar 15 2024 *)

%o (PARI) a(n) = sum(k=0, n\4, binomial(n+k, n-2-4*k));

%Y Cf. A099131, A368475, A369849, A369851.

%Y Cf. A017827.

%K nonn,easy

%O 1,3

%A _Seiichi Manyama_, Feb 03 2024