Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Aug 06 2024 22:00:40
%S 7,5,13,2,19,11,5,1,31,17,37,1,43,23,1,1,1,29,61,1,67,1,73,1,79,41,1,
%T 1,1,47,97,1,103,53,109,1,1,59,1,1,127,1,1,1,139,71,1,1,151,1,157,1,
%U 163,83,1,1,1,89,181,1,1,1,193,1,199,101,1,1,211
%N Denominator of the continued fraction 1/(2-3/(3-4/(4-5/(...(n-1)-n/(n+2))))).
%C Conjecture: The sequence contains only 1's and the primes.
%C Conjecture: The sequence of record values is A002476. - _Bill McEachen_, Mar 24 2024
%C a(n) = 1 positions appear to correspond to A334919(m) - 1, m > 2. - _Bill McEachen_, Aug 05 2024
%H Mohammed Bouras, <a href="https://doi.org/10.5281/zenodo.10992128">The Distribution Of Prime Numbers And Continued Fractions</a>, (ppt) (2022)
%F a(n) = (3n - 2)/gcd(3n - 2, A051403(n-2) + 2*A051403(n-3)).
%e For n=3, 1/(2 - 3/(3 + 2)) = 5/7, so a(3)=7.
%e For n=4, 1/(2 - 3/(3 - 4/(4 + 2))) = 7/5, so a(4)=5.
%e For n=5, 1/(2 - 3/(3 - 4/(4 - 5/(5 + 2)))) = 41/13, so a(5)=13.
%o (Python)
%o from math import gcd, factorial
%o def A369797(n): return (a:=3*n-2)//gcd(a,a*sum(factorial(k) for k in range(n-2))+n*factorial(n-2)>>1) # _Chai Wah Wu_, Feb 26 2024
%Y Cf. A051403, A356360.
%K nonn
%O 3,1
%A _Mohammed Bouras_, Feb 25 2024