login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369746
Expansion of e.g.f. exp( 3 * (1-sqrt(1-2*x)) ).
0
1, 3, 12, 63, 423, 3528, 35559, 422901, 5817744, 91072269, 1600588269, 31230827532, 670252672593, 15696888917427, 398454496989012, 10899543418960167, 319672849622745951, 10007954229075765984, 333139545206104991031, 11749955670275356579941
OFFSET
0,2
FORMULA
a(0) = 1; a(n) = Sum_{k=0..n-1} 3^(n-k) * (n-1+k)! / (2^k * k! * (n-1-k)!).
a(n) = (2*n-3)*a(n-1) + 9*a(n-2).
MAPLE
# The row polynomials of A132062 evaluated at x = 3.
T := proc(n, k) option remember; if k = 0 then 0^n elif n < k then 0
else (2*(n - 1) - k)*T(n - 1, k) + T(n - 1, k - 1) fi end:
seq(add(T(n, k)*3^k, k = 0..n), n = 0..19); # Peter Luschny, Apr 25 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(3*(1-sqrt(1-2*x)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 30 2024
STATUS
approved