login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of pairs (p,q) of distinct partitions of n such that the set of parts in q is a subset of the set of parts in p.
3

%I #17 Feb 29 2024 14:25:12

%S 0,0,0,1,3,6,17,28,62,107,201,316,607,909,1567,2444,4025,5979,9749,

%T 14250,22467,32950,50137,72295,109728,156182,230570,328089,477606,

%U 670213,968324,1346662,1917385,2658120,3736326,5139004,7183707,9798418,13546453,18414693

%N Number of pairs (p,q) of distinct partitions of n such that the set of parts in q is a subset of the set of parts in p.

%H Alois P. Heinz, <a href="/A369707/b369707.txt">Table of n, a(n) for n = 0..350</a>

%F a(n) = A369704(n) - A000041(n).

%e a(5) = 6: (2111, 11111), (2111, 221), (221, 11111), (221, 2111), (311, 11111), (41, 11111).

%e a(6) = 17: (21111, 111111), (21111, 2211), (21111, 222), (2211, 111111), (2211, 21111), (2211, 222), (3111, 111111), (321, 111111), (321, 21111), (321, 2211), (321, 222), (321, 3111), (3111, 33), (321, 33), (411, 111111), (42, 222), (51, 111111).

%p b:= proc(n, m, i) option remember; `if`(n=0,

%p `if`(m=0, 1, 0), `if`(i<1, 0, b(n, m, i-1)+add(

%p add(b(n-i*j, m-i*h, i-1), h=0..m/i), j=1..n/i)))

%p end:

%p a:= n-> b(n$3)-combinat[numbpart](n):

%p seq(a(n), n=0..42);

%t b[n_, m_, i_] := b[n, m, i] = If[n == 0,

%t If[m == 0, 1, 0], If[i < 1, 0, b[n, m, i - 1] +

%t Sum[Sum[b[n - i*j, m - i*h, i - 1], {h, 0, m/i}], {j, 1, n/i}]]];

%t a[n_] := b[n, n, n] - PartitionsP[n];

%t Table[a[n], {n, 0, 42}] (* _Jean-François Alcover_, Feb 29 2024, after _Alois P. Heinz_ *)

%Y Cf. A000041, A369704, A369910.

%K nonn

%O 0,5

%A _Alois P. Heinz_, Jan 29 2024