|
|
A369623
|
|
Expansion of (1/x) * Series_Reversion( x / (1/(1-x)^3 + x^3) ).
|
|
2
|
|
|
1, 3, 15, 92, 624, 4509, 34033, 265164, 2116560, 17219068, 142252608, 1190173956, 10064038469, 85873044573, 738446318232, 6393218956733, 55680130965252, 487488352916496, 4288083926110045, 37878037865662422, 335859658273133355, 2988274511990407436
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(n+1,k) * binomial(4*n-6*k+2,n-3*k).
|
|
PROG
|
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1/(1-x)^3+x^3))/x)
(PARI) a(n) = sum(k=0, n\3, binomial(n+1, k)*binomial(4*n-6*k+2, n-3*k))/(n+1);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|