Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 04 2024 13:37:34
%S 1,1,2,4,9,20,45,100,224
%N Maximal size of Condorcet domain on n alternatives.
%C A Condorcet domain is a set D of permutations of [n] such that for any i, j, k from [n] there do not exist three permutations in D in which i, j, k are ordered in all three different cyclic permutations of the order (i, j, k). If these permutations are interpreted as voters' preferences, this condition prevents the Condorcet effect.
%C Condorcet domains are also known as acyclic domains, acyclic sets of linear orders, consistent profiles, or consistent sets.
%H Dolica Akello-Egwell, Charles Leedham-Green, Alastair Litterick, Klas Markström and Søren Riis, <a href="https://arxiv.org/abs/2306.15993">Condorcet Domains of Degree at most Seven</a>, arXiv:2306.15993 [cs.DM], 2023. See the <a href="http://abel.math.umu.se/~klasm/Data/CONDORCET/">website</a> presenting all maximal unitary Condorcet domains on 4, 5, 6, 7 alternatives.
%H Clemens Puppe and Arkadii Slinko, <a href="https://econpapers.wiwi.kit.edu/downloads/KITe_WP_159.pdf">Maximal Condorcet domains: A further progress report</a>, KIT Working Paper Series in Economics, 159 (2022).
%H Charles Leedham-Green, Klas Markström and Søren Riis, <a href="https://doi.org/10.1007/s00355-023-01481-3">The largest Condorcet domain on 8 alternatives</a>, Soc. Choice Welf., 62 (2024), 109-116.
%H Bernard Monjardet, <a href="https://doi.org/10.1007/978-3-540-79128-7_8">Acyclic domains of linear orders: a survey</a>, in "The Mathematics of Preference, Choice and Order: Essays in Honor of Peter Fishburn", edited by Steven Brams, William V. Gehrlein and Fred S. Roberts, Springer, 2009, pp. 139-160; preprint: <a href="https://shs.hal.science/halshs-00198635">halshs-00198635</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Condorcet_paradox">Condorcet paradox</a>.
%e For n <= 2, the set of all n! permutations is a Condorcet domain.
%e For n = 3, an example of a Condorcet domain of maximal size is the following set of permutations:
%e 123
%e 213
%e 231
%e 321
%e For n = 4, an example of a Condorcet domain of maximal size is:
%e 1234
%e 1324
%e 1342
%e 3124
%e 3142
%e 3412
%e 3421
%e 4312
%e 4321
%Y Cf. A144685 (size of Fishburn's alternating domain), A144686 (maximal size of Condorcet domain containing a maximal chain), A144687, A289684.
%K nonn,hard,more
%O 0,3
%A _Andrey Zabolotskiy_, Jan 27 2024