login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the minimum value of k > 0 such that A075860(n) = A075860(n+k) with n > 1.
0

%I #10 Mar 17 2024 04:01:37

%S 2,6,4,1,6,3,7,5,10,110,6,9,13,1,10,193,6,15,1,9,22,250,1,10,6,1,5,

%T 370,8,27,7,23,34,1,6,398,2,6,9,610,4,39,13,7,2,730,6,1,1,9,3,850,11,

%U 9,6,28,58,1586,3,57,8,13,2,7,3,818,25,5,11,1210,5,69,1,11

%N a(n) is the minimum value of k > 0 such that A075860(n) = A075860(n+k) with n > 1.

%e For n=5, A075860(5) = A075860(5+1), so a(5)=1.

%e For n=15, A075860(15) = A075860(15+1), so a(15)=1.

%p f := proc(n) option remember;

%p if isprime(n) then

%p n;

%p else

%p procname(convert(numtheory:-factorset(n), `+`));

%p fi;

%p end proc:

%p g := proc(n)

%p local k;

%p for k from 1 do

%p if f(n+k) = f(n) then

%p return k;

%p fi;

%p end do;

%p end proc:

%p map(g, [$2..100]);

%o (PARI) fp(n, pn) = if (n == pn, n, fp(vecsum(factor(n)[, 1]), n));

%o f(n) = if (n==1, 0, fp(n, 0));

%o a(n) = my(k=1, fn=f(n)); while(f(n+k) != fn, k++); k; \\ _Michel Marcus_, Feb 20 2024

%Y Cf. A075860.

%K nonn

%O 2,1

%A _Rafik Khalfi_, Jan 25 2024