login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369477
Expansion of (1/x) * Series_Reversion( x / ((1+x) * (1+x+x^2)^2) ).
3
1, 3, 14, 77, 464, 2964, 19717, 135131, 947549, 6765642, 49022225, 359545750, 2664127354, 19913283809, 149968276974, 1136856855549, 8668000962927, 66428474900907, 511414514214628, 3953420853213504, 30674783555852576, 238808419235022293, 1864869207177530320
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(3*n-k+3,n-2*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/((1+x)*(1+x+x^2)^2))/x)
(PARI) a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((t+u)*(n+1)-k, n-s*k))/(n+1);
CROSSREFS
Cf. A369440.
Sequence in context: A198656 A240402 A048779 * A052186 A330518 A228656
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 23 2024
STATUS
approved