Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Jun 09 2024 08:35:52
%S 0,10,264,2052,9280,30750,83160,194824,410112,794610,1441000,2475660,
%T 4065984,6428422,9837240,14634000,21237760,30155994,41996232,57478420,
%U 77448000,102889710,134942104,174912792,224294400,284781250,358286760,446961564,553212352
%N Number of 3 X 3 Fishburn matrices with entries in the set {0,1,...,n}.
%C Number of upper triangular 3 X 3 {0,1,...,n}-matrices with no zero rows or columns.
%H Alois P. Heinz, <a href="/A369423/b369423.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F a(n) = n^3*(n+1)*(n^2+3*n+1) = n^6 + 4*n^5 + 4*n^4 + n^3.
%F G.f.: 2*x*(4*x^4-55*x^3-207*x^2-97*x-5)/(x-1)^7.
%e a(1) = 10:
%e [100] [110] [100] [110] [101] [111] [101] [111] [110] [111]
%e [ 10] [ 10] [ 11] [ 11] [ 10] [ 10] [ 11] [ 11] [ 01] [ 01]
%e [ 1] [ 1] [ 1] [ 1] [ 1] [ 1] [ 1] [ 1] [ 1] [ 1].
%p a:= n-> n^3*(n+1)*(n^2+3*n+1):
%p seq(a(n), n=0..28);
%t Table[n^3*(n + 1)*(n^2 + 3*n + 1), {n, 0, 50}] (* _Paolo Xausa_, Jun 09 2024 *)
%Y Row n=3 of A369415.
%K nonn,easy
%O 0,2
%A _Alois P. Heinz_, Jan 23 2024