OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+k+1,k) * binomial(2*n+2,n-3*k).
a(n) = (1/(n+1)) * [x^n] ( (1+x)^2 / (1-x^3)^2 )^(n+1). - Seiichi Manyama, Feb 16 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x/(1+x)^2*(1-x^3)^2)/x)
(PARI) a(n, s=3, t=2, u=2) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial(u*(n+1), n-s*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 22 2024
STATUS
approved