%I #13 Mar 03 2024 11:28:16
%S 1,0,1,0,3,7,0,6,60,90,0,10,310,1505,1701,0,15,1260,14490,46620,42525,
%T 0,21,4445,105875,716205,1727110,1323652,0,28,14280,653100,8162000,
%U 38623200
%N Triangle of numbers read by rows T(n,k) = binomial(n+1,k+1)*Stirling2(n+k,k).
%C The triangle T(n,k) is a functional dual of the triangle A269939 in identity: B(n) = Sum_{k=0..n}(-1)^(k)*A269939(n,k)/Binomial(n+k,k) = Sum_{k=0..n}(-1)^(k)*T(n,k)/Binomial(n+k,k). Where B(n) are the Bernoulli numbers.
%H I. V. Statsenko, <a href="https://aeterna-ufa.ru/sbornik/IN-2024-01-2.pdf#page=15">Functional twin of triangle A269939</a>, Innovation science No 1-2, State Ufa, Aeterna Publishing House, 2024, pp. 15-19. In Russian.
%F T(n,k) = binomial(n+1,k+1)*Stirling2(n+k,k).
%e n\k 0 1 2 3 4 5
%e 0: 1
%e 1: 0 1
%e 2: 0 3 7
%e 3: 0 6 60 90
%e 4: 0 10 310 1505 1701
%e 5: 0 15 1260 14490 46620 42525
%p T:=(n,k)->((n+1)!/((k+1)!*(n-k)!))*Stirling2(n+k,k):seq(seq T(n,k),k=0..n), n=0..10);
%Y Cf. A007820 (right diagonal).
%K nonn,tabl
%O 0,5
%A _Igor Victorovich Statsenko_, Jan 22 2024