login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369359
a(n) is the total semiperimeter over all Motzkin polyominoes of length n.
1
0, 2, 4, 11, 29, 80, 222, 624, 1766, 5030, 14396, 41371, 119297, 345008, 1000274, 2906427, 8461269, 24674718, 72065892, 210766089, 617173791, 1809257448, 5309289426, 15594735954, 45845032212, 134880781266, 397123496252, 1170026790029, 3449372893511, 10175133060424
OFFSET
0,2
LINKS
Jean-Luc Baril, Sergey Kirgizov, José L. Ramírez, and Diego Villamizar, The Combinatorics of Motzkin Polyominoes, arXiv:2401.06228 [math.CO], 2024. See Corollary 4.4 and Corollary 4.5 at pages 9-10.
FORMULA
From Corollary 4.4 in Baril et al.: (Start)
G.f.: (1 + x^2 - (1 + x)*sqrt(1 - 2*x - 3*x^2))/(2*x*sqrt(1 - 2*x - 3*x^2)).
a(n) ~ (5/6)*sqrt(3/Pi)*3^n/sqrt(n). (End)
a(n) = A002426(n) + 2*A002426(n-1) - 2*A001006(n-1) for n > 0. [Corollary 4.5 in Baril et al.]
MAPLE
gf := ((x^2+1)/sqrt((1-3*x)*(x+1))-(x+1))/(2*x): ser := series(gf, x, 40):
seq(coeff(ser, x, k), k = 0..29); # Peter Luschny, Jan 21 2024
MATHEMATICA
a[n_]:=SeriesCoefficient[(1+x^2-(1+x)Sqrt[1-2x-3x^2])/(2x*Sqrt[1-2x-3x^2]), {x, 0, n}]; Array[a, 30, 0]
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Jan 21 2024
STATUS
approved