Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jan 25 2024 15:29:05
%S 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,15,23,16,24,
%T 25,26,27,28,21,29,30,31,30,32,33,34,26,35,36,37,38,39,40,28,30,41,42,
%U 43,44,45,46,47,44,48,49,50,51,52,53,37,54,55,56,57,58,59,60,57,44,61,62,63,41,64,60,65,66,67,68,69,70,71,72,73,74,75,76,77,78,65,79,57
%N Lexicographically earliest infinite sequence such that a(i) = a(j) => A342671(i) = A342671(j) and A349162(i) = A349162(j), for all i, j >= 1.
%C Restricted growth sequence transform of the ordered pair [A342671(n), A349162(n)], or equally, of the pair [A000203(n), A342671(n)], or equally, of the pair [A000203(n), A349162(n)].
%C For all i, j >= 1:
%C A369259(i) = A369259(j) => a(i) = a(j) => A286603(i) = A286603(j).
%H Antti Karttunen, <a href="/A369260/b369260.txt">Table of n, a(n) for n = 1..65537</a>
%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>
%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%o (PARI)
%o up_to = 65537;
%o rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
%o A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A342671(n) = gcd(sigma(n), A003961(n));
%o Aux369260(n) = { my(u=A342671(n)); [u, sigma(n)/u]; };
%o v369260 = rgs_transform(vector(up_to, n, Aux369260(n)));
%o A369260(n) = v369260[n];
%Y Cf. A000203, A003961, A342671, A348993, A349162.
%Y Cf. also A286603, A291751, A369259, A369261.
%K nonn
%O 1,2
%A _Antti Karttunen_, Jan 25 2024