login
A369226
Expansion of (1/x) * Series_Reversion( x * (1-x) / (1+x^2)^2 ).
2
1, 1, 4, 13, 53, 220, 968, 4373, 20271, 95705, 458904, 2228220, 10934524, 54143848, 270189008, 1357428997, 6860264323, 34853234867, 177900211204, 911867479717, 4691701977973, 24222505191984, 125448280976224, 651555603531308, 3392951906596708, 17711433386188300
OFFSET
0,3
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(2*n+2,k) * binomial(2*n-2*k,n-2*k).
a(n) = (1/(n+1)) * [x^n] ( 1/(1-x) * (1+x^2)^2 )^(n+1). - Seiichi Manyama, Feb 14 2024
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)/(1+x^2)^2)/x)
(PARI) a(n, s=2, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1), k)*binomial((u+1)*(n+1)-s*k-2, n-s*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 18 2024
STATUS
approved