login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of labeled simple graphs with n vertices and at most n edges (not necessarily covering).
14

%I #11 Jul 15 2024 10:22:35

%S 1,1,2,8,57,638,9949,198440,4791323,135142796,4346814276,156713948672,

%T 6251579884084,273172369790743,12969420360339724,664551587744173992,

%U 36543412829258260135,2146170890448154922648,134053014635659737513358,8872652968135849629240560

%N Number of labeled simple graphs with n vertices and at most n edges (not necessarily covering).

%F a(n) = Sum_{k=0..n} binomial(binomial(n,2),k).

%e The a(0) = 1 through a(3) = 8 graphs:

%e {} {} {} {}

%e {{1,2}} {{1,2}}

%e {{1,3}}

%e {{2,3}}

%e {{1,2},{1,3}}

%e {{1,2},{2,3}}

%e {{1,3},{2,3}}

%e {{1,2},{1,3},{2,3}}

%t Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]<=n&]],{n,0,5}]

%o (Python)

%o from math import comb

%o def A369192(n): return sum(comb(comb(n,2),k) for k in range(n+1)) # _Chai Wah Wu_, Jul 14 2024

%Y The version for loop-graphs is A066383, covering A369194.

%Y The case of equality is A116508, covering A367863, also A367862.

%Y The connected case is A129271, unlabeled A005703.

%Y The covering case is A369191, minimal case A053530.

%Y Counting only covered vertices gives A369193.

%Y A006125 counts graphs, unlabeled A000088.

%Y A006129 counts covering graphs, unlabeled A002494.

%Y A054548 counts graphs covering n vertices with k edges, with loops A369199.

%Y A133686 counts choosable graphs, covering A367869.

%Y A367867 counts non-choosable graphs, covering A367868.

%Y Cf. A000169, A000272, A000666, A001187, A006649, A057500, A143543.

%K nonn

%O 0,3

%A _Gus Wiseman_, Jan 17 2024