The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A369100 Dirichlet g.f.: zeta(s)^3 * (1 - 2^(1-s))^2. 0
 1, -1, 3, -2, 3, -3, 3, -2, 6, -3, 3, -6, 3, -3, 9, -1, 3, -6, 3, -6, 9, -3, 3, -6, 6, -3, 10, -6, 3, -9, 3, 1, 9, -3, 9, -12, 3, -3, 9, -6, 3, -9, 3, -6, 18, -3, 3, -3, 6, -6, 9, -6, 3, -10, 9, -6, 9, -3, 3, -18, 3, -3, 18, 4, 9, -9, 3, -6, 9, -9, 3, -12, 3, -3, 18 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 LINKS Table of n, a(n) for n=1..75. FORMULA Sum_{k=1..n} a(k) ~ n * log(2)^2. Multiplicative with a(2^e) = (e^2-5*e+2)/2, and a(p^e) = (e+1)*(e+2)/2 for an odd prime p. - Amiram Eldar, Jan 13 2024 MATHEMATICA Table[Sum[Sum[-(-1)^d, {d, Divisors[k]}]*(-1)^(n/k+1), {k, Divisors[n]}], {n, 1, 100}] f[p_, e_] := (e + 1)*(e + 2)/2; f[2, e_] := (e^2 - 5*e + 2)/2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 13 2024 *) PROG (PARI) a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e=f[i, 2]; if(p == 2, (e^2-5*e+2)/2, (e+1)*(e+2)/2)); } \\ Amiram Eldar, Jan 13 2024 CROSSREFS Cf. A007425, A048272, A288571. Sequence in context: A016459 A242309 A275663 * A060585 A114451 A142246 Adjacent sequences: A369097 A369098 A369099 * A369101 A369102 A369103 KEYWORD sign,mult AUTHOR Vaclav Kotesovec, Jan 13 2024 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 00:35 EDT 2024. Contains 372666 sequences. (Running on oeis4.)