Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jan 13 2024 10:44:58
%S 3,0,7,4,5,2,4,6,7,6,8,0,3,6,6,0,5,1,6,3,5,7,9,8,5,4,6,6,2,2,1,1,1,6,
%T 2,9,4,4,4,2,8,8,6,1,1,7,0,0,7,9,4,5,5,5,5,1,3,9,5,1,5,8,2,0,9,4,6,1,
%U 2,6,6,4,3,3,8,5,3,7,6,2,9,4,9,8,8,1,0,1,3,2,5,7,9,3,8,2,9,1,9,7,8,0,7,5,1
%N Decimal expansion of the asymptotic probability that 2 random integer 3 X 3 matrices generate the ring M_3(Z).
%H Steven Finch, <a href="https://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, arXiv:2001.00578 [math.HO], 2020-2022. See p. 40.
%H Rostyslav V. Kravchenko, Marcin Mazur, and Bogdan V. Petrenko, <a href="http://dx.doi.org/10.2140/ant.2012.6.243">On the smallest number of generators and the probability of generating an algebra</a>, Algebra & Number Theory, Vol. 6, No. 2 (2012), pp. 243-291; <a href="https://arxiv.org/abs/1001.2873">arXiv preprint</a>, arXiv:1001.2873 [math.RA], 2010.
%F Equals 1/(zeta(2)^2*zeta(3)).
%e 0.30745246768036605163579854662211162944428861170079...
%t RealDigits[1/(Zeta[2]^2*Zeta[3]), 10, 120][[1]]
%o (PARI) 1/(zeta(2)^2*zeta(3))
%Y Cf. A002117, A013661, A369095.
%K nonn,cons
%O 0,1
%A _Amiram Eldar_, Jan 13 2024