login
A369080
Number of permutations of [n] such that the element sum of each cycle is odd.
2
1, 1, 1, 2, 6, 36, 180, 1080, 7560, 75600, 680400, 6804000, 74844000, 1047816000, 13621608000, 190702512000, 2860537680000, 51489678240000, 875324530080000, 15755841541440000, 299360989287360000, 6585941764321920000, 138304777050760320000, 3042705095116727040000
OFFSET
0,4
COMMENTS
Number of permutations of [n] such that each cycle has an odd number of odd elements.
a(n+1)/a(n) is an integer for all n >= 0.
LINKS
Wikipedia, Permutation
EXAMPLE
a(0) = 1: the empty permutation.
a(1) = 1: (1).
a(2) = 1: (12).
a(3) = 2: (12)(3), (1)(23).
a(4) = 6: (124)(3), (142)(3), (12)(34), (14)(23), (1)(234), (1)(243).
MAPLE
b:= proc(x, y) option remember; `if`(x+y=0, 1, add(
`if`(j::odd, binomial(x-1, j-1)*add((i+j-1)!*
b(x-j, y-i)*binomial(y, i), i=0..y), 0), j=1..x))
end:
a:= n-> (h-> b(n-h, h))(iquo(n, 2)):
seq(a(n), n=0..23);
# second Maple program:
b:= n-> (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>,
<0|0|0|0|1>, <-1|1|0|0|1>>^n. <<1, 2, 3, 6, 5>>)[1, 1]:
a:= proc(n) option remember; `if`(n<2, 1, a(n-1)*b(n-2)) end:
seq(a(n), n=0..23);
CROSSREFS
Sequence in context: A019020 A236692 A323945 * A101609 A281024 A152668
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 12 2024
STATUS
approved