Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jan 28 2024 18:07:41
%S 0,0,0,0,1,0,0,6,2,0,0,48,18,12,0,0,500,192,144,108,0,0,6480,2500,
%T 1920,1620,1280,0,0,100842,38880,30000,25920,23040,18750,0,0,1835008,
%U 705894,544320,472500,430080,393750,326592,0
%N Triangle read by rows: T(n, k) = binomial(n - 1, k - 1) * (k - 1)^(k - 1) * (n - k) * (n - k + 1)^(n - k - 1).
%F T = B066320 - A369017 (where B066320 = A066320 after adding a 0-column to the left and then setting offset to (0, 0)).
%e Triangle starts:
%e [0] [0]
%e [1] [0, 0]
%e [2] [0, 1, 0]
%e [3] [0, 6, 2, 0]
%e [4] [0, 48, 18, 12, 0]
%e [5] [0, 500, 192, 144, 108, 0]
%e [6] [0, 6480, 2500, 1920, 1620, 1280, 0]
%e [7] [0, 100842, 38880, 30000, 25920, 23040, 18750, 0]
%e [8] [0, 1835008, 705894, 544320, 472500, 430080, 393750, 326592, 0]
%p T := (n, k) -> binomial(n-1, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k-1):
%p seq(seq(T(n, k), k = 0..n), n=0..9);
%t A369016[n_, k_] := Binomial[n-1, k-1] If[k == 1, 1, (k-1)^(k-1)] (n-k) (n-k+1)^(n-k-1); Table[A369016[n, k], {n, 0, 10}, {k, 0, n}] (* _Paolo Xausa_, Jan 28 2024 *)
%o (SageMath)
%o def T(n, k): return binomial(n-1, k-1)*(k-1)^(k-1)*(n-k)*(n-k+1)^(n-k-1)
%o for n in range(0, 9): print([T(n, k) for k in range(n + 1)])
%Y A368849, A368982 and this sequence are alternative sum representation for A001864 with different normalizations.
%Y T(n, k) = A368849(n, k) / n for n >= 1.
%Y T(n, 1) = A053506(n) for n >= 1.
%Y T(n, n - 1) = A055897(n - 1) for n >= 2.
%Y Sum_{k=0..n} T(n, k) = A000435(n) for n >= 1.
%Y Sum_{k=0..n} (-1)^(k+1)*T(n, k) = A368981(n) / n for n >= 1.
%Y Cf. A066320, A369017.
%K nonn,tabl
%O 0,8
%A _Peter Luschny_, Jan 12 2024