login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} binomial(n, k - 1)*(1 - k)^(k - 1)*(n - k)*(n - k + 1)^(n - k).
4

%I #13 Jan 13 2024 16:13:37

%S 0,0,2,12,168,1720,33360,492324,12510848,242010864,7645282560,

%T 183157788220,6930019734528,198083231524776,8738660263983104,

%U 290276762478721620,14634486747811184640,554012204526293864416,31427811840457845964800,1335650409538235449288812,84210181959664202315202560

%N a(n) = Sum_{k=0..n} binomial(n, k - 1)*(1 - k)^(k - 1)*(n - k)*(n - k + 1)^(n - k).

%F Alternating row sums of A368849, negated.

%t A368981[n_] :=Sum[Binomial[n, k-1] If[k == 1, 1, (1-k)^(k-1)] (n-k) (n-k+1)^(n-k), {k, 0, n}];

%t Array[A368981, 25, 0] (* _Paolo Xausa_, Jan 13 2024 *)

%o (SageMath)

%o def a(n):

%o return sum(binomial(n, k-1)*(1 - k)^(k - 1)*(n - k)*(n - k + 1)^(n - k)

%o for k in range(n + 1))

%o print([a(n) for n in range(0, 21)])

%Y Cf. A368849.

%K nonn

%O 0,3

%A _Peter Luschny_, Jan 11 2024