login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of (1/x) * Series_Reversion( x * (1-x-x^3)^2 ).
8

%I #18 Jan 13 2024 10:45:13

%S 1,2,7,32,165,910,5251,31314,191463,1193808,7561825,48522630,

%T 314752515,2060587112,13597183916,90342651982,603886553067,

%U 4058197580308,27401404029181,185806213609730,1264774546754103,8639226724499070,59198404680049915

%N Expansion of (1/x) * Series_Reversion( x * (1-x-x^3)^2 ).

%H Seiichi Manyama, <a href="/A368962/b368962.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Res#revert">Index entries for reversions of series</a>

%F a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+k+1,k) * binomial(3*n-2*k+1,n-3*k).

%o (PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x-x^3)^2)/x)

%o (PARI) a(n, s=3, t=2, u=0) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);

%Y Cf. A368966, A368968.

%Y Cf. A368961.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Jan 10 2024