Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Jan 11 2024 09:24:52
%S 2,2,2,3,3,3,3,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,7,
%T 7,7,7,7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,
%U 9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10
%N Burning number of the n-antiprism graph.
%C The n-antiprism graph is defined for n >= 3. The sequence has been extended to n=1 using the formula. - _Andrew Howroyd_, Jan 10 2024
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AntiprismGraph.html">Antiprism Graph</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BurningNumber.html">Burning Number</a>.
%F a(n) = A204166(2*n) = A351846(2*n-1) + 1 = floor((sqrt(16*n - 1) + 1)/4) + 1. - _Andrew Howroyd_, Jan 10 2024
%t Table[Floor[(Sqrt[16 n - 1] + 5)/4], {n, 50}]
%t Floor[(Sqrt[16 Range[50] - 1] + 5)/4]
%o (PARI) a(n) = {1 + (sqrtint(16*n - 1) + 1)\4} \\ _Andrew Howroyd_, Jan 10 2024
%Y Cf. A156859, A204166, A351846.
%K nonn
%O 1,1
%A _Eric W. Weisstein_, Jan 10 2024
%E a(1)-a(2) and terms a(34) and beyond from _Andrew Howroyd_, Jan 10 2024