login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the least k such that A368877^k(n) < n or -1 if no such k exists.
2

%I #20 Sep 30 2024 15:47:45

%S 2,1,1,2,3,1,2,1,2,1,1,2,2,1,1,1,1,1,1,1,1,1,1,1,8,1,1,2,8,1,2,1,1,1,

%T 1,1,2,1,8,1,2,1,1,1,8,1,1,1,1,1,1,7,7,1,2,1,2,2,2,8,8,1,1,1,1,1,1,1,

%U 6,1,1,1,1,1,1,2,2,1,1,7,7,1,1,1,1,1,1,1,6,1

%N a(n) is the least k such that A368877^k(n) < n or -1 if no such k exists.

%C This is the falling time function ft in the paper of Eliahou et al.

%C The offset is 3 because A368877(1) = A368877(2) = 2, so for n<3 is not defined.

%H Paolo Xausa, <a href="/A368878/b368878.txt">Table of n, a(n) for n = 3..10000</a>

%H Shalom Eliahou, Jean Fromentin, and Rénald Simonetto, <a href="https://hal.science/hal-03294829">Is the Syracuse falling time bounded by 12?</a>, hal-03294829, 2021.

%t A368877[n_] := Nest[If[OddQ[#], (3*#+1)/2, #/2] &, n, BitLength[n]];

%t A368878[n_] := Length[NestWhileList[A368877, n, #>=n&]]-1;

%t Array[A368878, 120, 3] (* _Paolo Xausa_, Jan 08 2024 *)

%o (PARI) T(n) = if (n%2, (3*n+1)/2, n/2); \\ A014682

%o jp(n) = my(N=1+logint(n, 2)); for (i=1, N, n = T(n)); n; \\ A368877

%o a(n) = my(k=1, m=n); while ((m=jp(m)) >= n, k++); k;

%Y Cf. A014682, A070939, A368877.

%K nonn

%O 3,1

%A _Michel Marcus_, Jan 08 2024