login
a(n) = n! * (n+1)! * (n+2)! * Sum_{k=0..n} 1/(6^(n-k) * k! * (k+1)! * (k+2)!).
2

%I #13 May 26 2024 14:36:09

%S 1,2,9,91,1821,63736,3569217,299814229,35977707481,5936321734366,

%T 1305990781560521,373513363526309007,135958864323576478549,

%U 61861283267227297739796,34642318629647286734285761,23556776668160154979314317481

%N a(n) = n! * (n+1)! * (n+2)! * Sum_{k=0..n} 1/(6^(n-k) * k! * (k+1)! * (k+2)!).

%H Harvey P. Dale, <a href="/A368840/b368840.txt">Table of n, a(n) for n = 0..203</a>

%F a(n) = binomial(n+2,3)*a(n-1) + 1.

%t nxt[{n_,a_}]:={n+1,a*Binomial[n+3,3]+1}; NestList[nxt,{0,1},20][[;;,2]] (* _Harvey P. Dale_, May 26 2024 *)

%o (PARI) a(n) = n!*(n+1)!*(n+2)!*sum(k=0, n, 1/(6^(n-k)*k!*(k+1)!*(k+2)!));

%Y Cf. A000522, A228230.

%Y Cf. A368839.

%K nonn,easy

%O 0,2

%A _Seiichi Manyama_, Jan 07 2024