login
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) = n! * Sum_{j=0..n} (-1)^(n-j) * j^k/j!.
5

%I #13 Jan 04 2024 08:56:55

%S 1,0,0,0,1,1,0,1,0,-2,0,1,2,3,9,0,1,6,3,-8,-44,0,1,14,9,4,45,265,0,1,

%T 30,39,28,5,-264,-1854,0,1,62,153,100,-15,6,1855,14833,0,1,126,543,

%U 412,125,306,7,-14832,-133496,0,1,254,1809,1924,1065,546,-1799,8,133497,1334961

%N Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(n,k) = n! * Sum_{j=0..n} (-1)^(n-j) * j^k/j!.

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BellPolynomial.html">Bell Polynomial</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Touchard_polynomials">Touchard polynomials</a>

%F T(0,k) = 0^k and T(n,k) = n^k - n * T(n-1,k) for n>0.

%F E.g.f. of column k: B_k(x) * exp(x) / (1+x), where B_n(x) = Bell polynomials.

%e Square array begins:

%e 1, 0, 0, 0, 0, 0, 0, ...

%e 0, 1, 1, 1, 1, 1, 1, ...

%e 1, 0, 2, 6, 14, 30, 62, ...

%e -2, 3, 3, 9, 39, 153, 543, ...

%e 9, -8, 4, 28, 100, 412, 1924, ...

%e -44, 45, 5, -15, 125, 1065, 6005, ...

%e 265, -264, 6, 306, 546, 1386, 10626, ...

%o (PARI) T(n,k) = n!*sum(j=0, n, (-1)^(n-j)*j^k/j!);

%Y Columns k=0..5 give A182386, (-1)^(n-1) * A000240(n), A001477, A368716, A368717, A368718.

%Y Main diagonal gives A368725.

%Y Cf. A337085.

%K sign,tabl

%O 0,10

%A _Seiichi Manyama_, Jan 04 2024