login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368672
Total number of lattice paths from (0,0) to (k,n-k) for k=0..n using steps (i,j) with i,j>=0 and gcd(i,j)=1.
2
1, 2, 5, 14, 39, 110, 307, 860, 2407, 6736, 18851, 52758, 147651, 413224, 1156469, 3236546, 9057955, 25350028, 70945807, 198552344, 555678123, 1555147480, 4352310421, 12180584958, 34089170027, 95403588336, 267001063969, 747242000068, 2091267346883, 5852721227868
OFFSET
0,2
LINKS
FORMULA
a(n) mod 2 = 1 - (n mod 2) = A059841(n).
a(n) ~ c * d^n, where d = 2.798648023933224047287803536948757710187420348758496337690531870498937575... and c = 0.639525188357518889842205998775477309094300590250850025271938769053628196... - Vaclav Kotesovec, Jan 13 2024
MAPLE
b:= proc(n, k) option remember; `if`(min(n, k)=0, 1, add(add(
`if`(igcd(i, j)=1, b(n-i, k-j), 0), j=0..k), i=0..n))
end:
a:= n-> add(b(k, n-k), k=0..n):
seq(a(n), n=0..29);
CROSSREFS
Row sums of A362242.
Cf. A059841.
Sequence in context: A202207 A132834 A000641 * A026135 A201778 A367655
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 02 2024
STATUS
approved