login
Number of lattice paths from (0,0) to (n,n) using steps (i,j) with i,j>=0 and gcd(i,j)=1.
2

%I #14 Jan 13 2024 04:45:17

%S 1,3,17,111,757,5321,38131,276913,2031075,15011373,111618559,

%T 834026649,6257264575,47105424671,355648865425,2691925368489,

%U 20420008516447,155197818599687,1181563534890855,9009291052956319,68788955737056469,525876413869285467

%N Number of lattice paths from (0,0) to (n,n) using steps (i,j) with i,j>=0 and gcd(i,j)=1.

%H Alois P. Heinz, <a href="/A368639/b368639.txt">Table of n, a(n) for n = 0..400</a>

%F a(n) = A362242(2n,n).

%F a(n) mod 2 = 1.

%F a(n) ~ c * d^n / sqrt(n), where d = 7.83243076186533979978704688382432500791136... and c = 0.4087157525553882018687231317140076547941617894... - _Vaclav Kotesovec_, Jan 13 2024

%e a(1) = 3: (00)(10)(11), (00)(01)(11), (00)(11).

%p b:= proc(n, k) option remember; `if`(min(n, k)=0, 1, add(add(

%p `if`(igcd(i, j)=1, b(n-i, k-j), 0), j=0..k), i=0..n))

%p end:

%p a:= n-> b(n$2):

%p seq(a(n), n=0..21);

%Y Cf. A362242.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Jan 01 2024