Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Jan 25 2024 08:45:36
%S 1,1,10,21,310,762,12820,33805,607550,1667214,31182540,87799362,
%T 1686609820,4835044372,94676506920,275037241149,5463738069390,
%U 16035014605830,322140216214300,953095126595062,19320606147948820,57539265876939756,1175037853461723160,3518503980453113106
%N Expansion of g.f. A(x) satisfying A(x) = 1 + 3*x*A(x)^2 - 2*x*A(-x)^2.
%C Conjecture: a(n) is odd when n = 2^k - 1 for k >= 0, and even elsewhere.
%H Paul D. Hanna, <a href="/A368635/b368635.txt">Table of n, a(n) for n = 0..600</a>
%F G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
%F (1.a) A(x) = 1 + 3*x*A(x)^2 - 2*x*A(-x)^2.
%F (1.b) A(x) = 1 + x*(A(x)^2 + A(-x)^2)/2 + 5*x*(A(x)^2 - A(-x)^2)/2.
%F (2.a) (A(x) + A(-x))/2 = 1 + 5*x*(A(x)^2 - A(-x)^2)/2.
%F (2.b) (A(x) - A(-x))/2 = x*(A(x)^2 + A(-x)^2)/2.
%F (2.c) (A(x) + A(-x))/2 = 1/(1 - 5*x*(A(x) - A(-x))).
%F (3.a) A(x) = (1 - sqrt(1 - 40*x + 20*x*A(-x) + 100*x^2*A(-x)^2))/(10*x).
%F (3.b) A(-x) = (sqrt(1 + 40*x - 20*x*A(x) + 100*x^2*A(x)^2) - 1)/(10*x).
%F (4.a) A(x) = (1 - sqrt(1 - 4*x*A(-x) - 4*x^2*A(-x)^2))/(2*x).
%F (4.b) A(-x) = (sqrt(1 + 4*x*A(x) - 4*x^2*A(x)^2) - 1) / (2*x).
%F (5) 0 = (2 - x) - 2*(1-3*x)*A(x) - x*(3+10*x)*A(x)^2 + 30*x^2*A(x)^3 - 25*x^3*A(x)^4.
%F (6) x = (1 + 3*x*A(x) - 5*x^2*A(x)^2) - sqrt(1 + 4*x*A(x) - 4*x^2*A(x)^2).
%F (7) A(x) = (1/x)*Series_Reversion( (1 + 3*x - 5*x^2) - sqrt(1 + 4*x - 4*x^2) ).
%F (8.a) Sum_{n>=0} a(n) * (sqrt(6) - 2)^n/5^n = sqrt(6)/2.
%F (8.b) Sum_{n>=0} a(n) * (2 - sqrt(6))^n/5^n = 1.
%F D-finite with recurrence +10935*n*(n-1)*(75132*n-217883) *(n+1)*a(n) -1458*n*(n-1) *(865728*n^2 -6402143*n+11031849)*a(n-1) -360 *(n-1)*(159580368*n^3 -781944228*n^2 +1079436906*n -451430219)*a(n-2) +24*(3677612544*n^4 -41906753640*n^3 +172755991440*n^2 -308392913875*n +202512185406)*a(n-3) +12000*(2*n-7) *(300528*n^3 -1622852*n^2 +3317670*n -2937917)*a(n-4) -3200*(n-4)*(865728*n -2073503) *(2*n-7)*(2*n-9) *a(n-5)=0. - _R. J. Mathar_, Jan 25 2024
%e G.f.: A(x) = 1 + x + 10*x^2 + 21*x^3 + 310*x^4 + 762*x^5 + 12820*x^6 + 33805*x^7 + 607550*x^8 + 1667214*x^9 + 31182540*x^10 + ...
%e RELATED SERIES.
%e We can see from the expansion of A(x)^2, which begins
%e A(x)^2 = 1 + 2*x + 21*x^2 + 62*x^3 + 762*x^4 + 2564*x^5 + 33805*x^6 + 121510*x^7 + 1667214*x^8 + 6236508*x^9 + 87799362*x^10 + ...
%e that the odd bisection of A(x) is derived from the even bisection of A(x)^2:
%e (A(x) - A(-x))/2 = x + 21*x^3 + 762*x^5 + 33805*x^7 + 1667214*x^9 + ...
%e (A(x)^2 + A(-x)^2)/2 = 1 + 21*x^2 + 762*x^4 + 33805*x^6 + 1667214*x^8 + ...
%e and the even bisection of A(x) is derived from the odd bisection of A(x)^2:
%e (A(x) + A(-x))/2 = 1 + 10*x^2 + 310*x^4 + 12820*x^6 + 607550*x^8 + 31182540*x^10 + ...
%e (A(x)^2 - A(-x)^2)/2 = 2*x + 62*x^3 + 2564*x^5 + 121510*x^7 + 6236508*x^9 + ...
%e so that (A(x) + A(-x))/2 = 1 + 5*x * (A(x)^2 - A(-x)^2)/2.
%e SPECIFIC VALUES.
%e A(-r) = 1 and A(r) = sqrt(6)/2 at r = (sqrt(6) - 2)/5 = 0.0898979485566356....
%o (PARI) {a(n) = my(A=1+x, B); for(i=1, n, A=truncate(A)+x*O(x^i); B=subst(A, x, -x);
%o A = 1 + x*(A^2 + B^2)/2 + 5*x*(A^2 - B^2)/2 ); polcoeff(A, n)}
%o for(n=0,30, print1(a(n),", "))
%o (PARI) {a(n) = my(A); A = (1/x)*serreverse( (1 + 3*x - 5*x^2) - sqrt(1 + 4*x - 4*x^2 +x^2*O(x^n)) ); polcoeff(A, n)}
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A368633, A368634, A368629, A368627.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Jan 12 2024