login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = Sum_{k=1..n} pi(k) * ceiling(n/k).
5

%I #9 Jan 01 2024 22:28:22

%S 0,1,4,8,14,20,30,38,49,59,72,82,101,113,130,147,167,181,206,222,248,

%T 270,293,311,346,367,392,416,448,468,508,530,565,594,624,653,700,724,

%U 757,789,836,862,913,941,985,1028,1067,1097,1159,1193,1240,1279,1328,1360,1418

%N a(n) = Sum_{k=1..n} pi(k) * ceiling(n/k).

%F a(n) = A092494(n) + A368612(n).

%t Table[Sum[PrimePi[k] Ceiling[n/k], {k, n}], {n, 100}]

%Y Cf. A000720 (pi), A046992, A092494, A368611, A368612, A368613.

%K nonn,easy

%O 1,3

%A _Wesley Ivan Hurt_, Dec 31 2023