login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-element sets of singletons or pairs of distinct elements of {1..n} with union {1..n}, or loop-graphs covering n vertices with n edges.
24

%I #15 Feb 24 2024 11:03:20

%S 1,1,3,17,150,1803,27364,501015,10736010,263461265,7283725704,

%T 223967628066,7581128184175,280103206674480,11216492736563655,

%U 483875783716549277,22371631078155742764,1103548801569848115255,57849356643299101021960,3211439288584038922502820

%N Number of n-element sets of singletons or pairs of distinct elements of {1..n} with union {1..n}, or loop-graphs covering n vertices with n edges.

%C It doesn't matter for this sequence whether we use loops such as {x,x} or half-loops such as {x}.

%H Andrew Howroyd, <a href="/A368597/b368597.txt">Table of n, a(n) for n = 0..200</a>

%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GraphLoop.html">Graph Loop</a>.

%F a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * binomial(binomial(k+1,2), n). - _Andrew Howroyd_, Jan 06 2024

%e The a(0) = 1 through a(3) = 17 set-systems:

%e {} {{1}} {{1},{2}} {{1},{2},{3}}

%e {{1},{1,2}} {{1},{2},{1,3}}

%e {{2},{1,2}} {{1},{2},{2,3}}

%e {{1},{3},{1,2}}

%e {{1},{3},{2,3}}

%e {{2},{3},{1,2}}

%e {{2},{3},{1,3}}

%e {{1},{1,2},{1,3}}

%e {{1},{1,2},{2,3}}

%e {{1},{1,3},{2,3}}

%e {{2},{1,2},{1,3}}

%e {{2},{1,2},{2,3}}

%e {{2},{1,3},{2,3}}

%e {{3},{1,2},{1,3}}

%e {{3},{1,2},{2,3}}

%e {{3},{1,3},{2,3}}

%e {{1,2},{1,3},{2,3}}

%t Table[Length[Select[Subsets[Subsets[Range[n],{1,2}], {n}],Union@@#==Range[n]&]],{n,0,5}]

%o (PARI) a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(binomial(k+1,2), n)) \\ _Andrew Howroyd_, Jan 06 2024

%Y This is the covering case of A014068.

%Y Allowing edges of any positive size gives A054780, covering case of A136556.

%Y Allowing any number of edges gives A322661, connected A062740.

%Y The case of just pairs is A367863, covering case of A116508.

%Y The unlabeled version is A368599.

%Y The version contradicting strict AOC is A368730.

%Y The connected case is A368951.

%Y A000085 counts set partitions into singletons or pairs.

%Y A006129 counts covering graphs, connected A001187.

%Y A058891 counts set-systems, unlabeled A000612.

%Y A100861 counts set partitions into singletons or pairs by number of pairs.

%Y A111924 counts set partitions into singletons or pairs by length.

%Y Cf. A000272, A000666, A057500, A066383, A333331, A367869, A368596, A368600, A368928, A368951, A369199.

%K nonn

%O 0,3

%A _Gus Wiseman_, Jan 04 2024

%E Terms a(7) and beyond from _Andrew Howroyd_, Jan 06 2024