Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jan 20 2024 09:46:25
%S 1,1,2,4,2,1,3,7,7,4,2,1,4,10,12,11,6,4,2,1,5,13,17,18,15,9,6,4,2,1,6,
%T 16,22,25,24,20,12,9,6,4,2,1,7,19,27,32,33,31,25,16,12,9,6,4,2,1,8,22,
%U 32,39,42,42,38,31,20,16,12,9,6,4,2,1,9,25,37
%N Irregular triangular array T, read by rows: T(n,k) = number of sums |x-y|+|y-z| = k, where x,y,z are in {1,2,...,n} and x < y.
%C Row n consists of 2n positive integers.
%e First eight rows:
%e 1 1
%e 2 4 2 1
%e 3 7 7 4 2 1
%e 4 10 12 11 6 4 2 1
%e 5 13 17 18 15 9 6 4 2 1
%e 6 16 22 25 24 20 12 9 6 4 2 1
%e 7 19 27 32 33 31 25 16 12 9 6 4 2 1
%e 8 22 32 39 42 42 38 31 20 16 12 9 6 4 2 1
%e For n=3, there are 9 triples (x,y,z) having x < y:
%e 121: |x-y| + |y-z| = 2
%e 122: |x-y| + |y-z| = 1
%e 123: |x-y| + |y-z| = 2
%e 131: |x-y| + |y-z| = 4
%e 132: |x-y| + |y-z| = 3
%e 133: |x-y| + |y-z| = 2
%e 231: |x-y| + |y-z| = 3
%e 232: |x-y| + |y-z| = 2
%e 233: |x-y| + |y-z| = 1,
%e so that row 2 of the array is (2,4,2,1), representing two 1s, four 2s, two 3s, and one 4.
%t t1[n_] := t1[n] = Tuples[Range[n], 3];
%t t[n_] := t[n] = Select[t1[n], #[[1]] < #[[2]] &];
%t a[n_, k_] := Select[t[n], Abs[#[[1]] - #[[2]]] + Abs[#[[2]] - #[[3]]] == k &];
%t u = Table[Length[a[n, k]], {n, 2, 15}, {k, 1, 2 n - 2}];
%t v = Flatten[u] (* sequence *)
%t Column[Table[Length[a[n, k]], {n, 2, 15}, {k, 1, 2 n - 2}]] (* array *)
%Y Cf. A006002 (row sums), A002620 (limiting reverse row), A368434, A368437, A368515, A368516, A368518, A368519, A368520, A368521, A368522.
%K nonn,tabf
%O 1,3
%A _Clark Kimberling_, Dec 31 2023