Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 Dec 28 2023 10:32:14
%S 1,3,16,113,1026,11782,166776,2825349,55797790,1258065866,31866312336,
%T 895430095738,27632885411236,928823226029532,33772464199743184,
%U 1320627875038128045,55259636489069057910,2463499964955575965954,116560977980742613228704
%N a(n) = Sum_{k=0..n} n^(n-k) * binomial(k+n,k).
%F a(n) = [x^n] 1/((1-n*x) * (1-x)^(n+1)).
%F a(n) ~ exp(1) * n^n. - _Vaclav Kotesovec_, Dec 28 2023
%o (PARI) a(n) = sum(k=0, n, n^(n-k)*binomial(n+k, k));
%Y Cf. A293574, A368489.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Dec 28 2023