Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #40 Dec 30 2023 03:08:50
%S 1,1,3,1,15,15,1,63,315,135,1,255,5355,11475,2295,1,1023,86955,782595,
%T 782595,75735,1,4095,1396395,50868675,213648435,103378275,4922775,1,
%U 16383,22362795,3268162755,55558766835,112909751955,26883274275,635037975
%N T(n,m) is the number of m-dimensional isotropic subspaces of a 2n-dimensional symplectic space over Z/2, n >= 0 and 0 <= m <= n.
%C The number of m-dimensional isotropic subspaces of an n-dimensional symplectic space over Z/2.
%H J. Baez, <a href="https://math.ucr.edu/home/baez/week187.html">This Week's Finds in Mathematical Physics (Week 187)</a>
%H M. H. Poroch, <a href="https://doi.org/10.1142/S1793557119500694">Bounds on subspace codes based on totally isotropic subspace in symplectic spaces and extended symplectic spaces</a>, Asian-European Journal of Mathematics, 12 (2019).
%H Z. Wan, <a href="https://www.sciengine.com/Math%20A0/doi/10.1360/ya1964-13-3-515">Notes on finite geometries and the construction of PBIB designs I, Some Anzahl theorems in symplectic geometry over finite fields</a>, Acta Sci. 13 (1964) 515-516.
%F T(n,m) = Product_{i=n-m+1..n} (2^(2i)-1)/Product_{i=1..m} (2^i-1).
%e Triangle begins:
%e 1;
%e 1, 3;
%e 1, 15, 15;
%e 1, 63, 315, 135;
%e 1, 255, 5355, 11475, 2295;
%e 1, 1023, 86955, 782595, 782595, 75735;
%e 1, 4095, 1396395, 50868675, 213648435, 103378275, 4922775;
%e ...
%t T[n_,m_]:=Product[(2^(2i)-1),{i,n-m+1,n}]/Product[(2^i-1),{i,1,m}]; Table[T[n,m],{n,0,7},{m,0,n}] (* _Stefano Spezia_, Dec 28 2023 *)
%o (Python)
%o from math import prod
%o q = 2
%o N = lambda n, m : (prod([q**(2*i)-1 for i in range(n-m+1, n+1)])//prod([q**i-1 for i in range(1, m+1)]))
%o print([N(n, m) for n in range(8) for m in range(n+1)])
%o (PARI) T(n,m) = prod(i=n-m+1, n, 2^(2*i)-1)/prod(i=1, m, 2^i-1); \\ _Michel Marcus_, Dec 27 2023
%Y Main diagonal gives A028362.
%Y Cf. A022166.
%K nonn,tabl
%O 0,3
%A _Simon Burton_, Dec 27 2023